

SafeBoX: Overcoming Data loss and Improved Multiclient Consistency via Cyclic

Redundancy Check in Cloud Data Synchronization

Muhammad Majid Sharif, Sajid Umair, Mian Muhammad Hamayun
School of Electrical Engineering and Computer Science (SEECS)

National University of Science and Technology (NUST) Islamabad Pakistan

{14mscsmsharif, 14mscssumair, mian.hamayun}@seecs.edu.pk

Abstract— Cloud computing is one of the most popular

achievements in the field of computers in recent years, where back-

end service providers provide various services to their clients. Cloud

storage is one of the services where clients can store their data on

service provider’s storage through internet. To avoid the

propagation of corrupted data is one of the main problems faced by

service providers. If we can detect corruption correctly then we can

use some methods to counter these problems. In this paper, we

propose the use of Cyclic Redundancy Check (CRC) to achieve the

goal of detecting corruption. CRC will be combined with EXT-4 file

system to make it compatible to as many systems as possible. The

proposed EXT4-CRC method will help us detect corruption better

with lesser data overhead and we can use a restoration mechanism

based on in-memory views to recover from data losses.

Keywords— Cloud storage; CRC; Dropbox; Seafile; ViewBox

I. INTRODUCTION

Cloud computing deals with the computation and storage of

data in response to requests from remote clients. In the past

people used to execute programs from a physical computer and

also used same programs on server machines in the offices. For

using the same data, either they have to take that data with

them physically in some hard/flash drive or had to transfer it

using remote copy operations i.e. scp command in Linux.

Cloud computing provides the facility to the users to store and

access their data with the help of internet from anywhere[1].

Cloud computing provides a lot of benefits to the users like

flexibility, automatic software update, increased collaboration,

work from anywhere, document control, security,

competitiveness and elasticity [2]. A typical cloud computing

model is presented in Fig. 1.

Fig. 1 Cloud Computing Model.

 Cloud computing provides different dynamic and scalable

services to its users like Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS)

[3, 4]. In this paper, we will discuss our work on cloud storage.

Cloud storage means that we store data in the cloud based

virtual machines. A cloud storage facility allows companies

and clients to store their data and access it from different

locations simultaneously. Cloud storage provides many

benefits like reliability, accessibility, synchronization etc. [1,

5]. Some other benefits are rapid deployment, data backup and

lower storage costs [5]. The cloud storage model is shown in

Fig. 2.

Fig. 2 Cloud Storage Model.

II. LITRATURE REVIEW

We have studied the data synchronization trends in various

papers and found that these techniques contains many

drawbacks. We will discuss these draw backs one by one.

A. Data Overhead

Checksum perfecting is important only for sequential reads;

if it is disabled, we can achieve the speed up of 15% due to

lesser workload. Ext4-cksum decreases data flow rate on

network and the bandwidth is wasted as too much data is

consumed in checksum as shown in Table 1.

Table 1 Data Transfer Overhead. This table highlights the difference
between data transfer speed of normal ext-4 vs ext-4 checksum techniques.

Work_ Load Ext_4 Ext_4_Cksum Slow_ down

File_ Server 79.58 MB/s 66.28 MB/s 16.71%

Varmail 2.90 MB/s 3.96 MB/s -36.55%

Web_ Server 150.28 MB/s 150.12 MB/s 0.11%

B. Less Consistency for Multiuser System

Unlike single-client consistency, multi-client consistency

requires the cloud server to be aware of Views, not just the

client. For open source services like Seafile it can, but not

for closed source services like, Dropbox. If multiple clients

are trying to modify a file on the cloud at the same time,

ViewBox fails to cater for this problem as highlighted in

Fig. 3 [6].

Fig. 3 Simultaneous multiple users on a single cloud account.

C. Cold Cache Latency

If there are too many cache misses, View box and other

could storage applications’ efficiency decreases drastically.

As shown in the Table 2.

Table 2 Latency in Copy on Write (CoW). This table shows the

response time in normalized form for Copy on Write operations.

Operation
Normalized Response Time

Before C O W After C O W

Unlink (cold)

Unlink (warm)

484.49 1.07
6.43 0.97

Truncate (cold)

Truncate (warm)

561.18 1.02

5.98 0.93

Rename(cold)

Rename(warm)

469.02 1.10
6.84 1.02

Overwrite (cold)

Overwrite(warm)

1.56 1.10

1.07 0.97

D. Checksum EXT-4 Compatibility

EXT-4 is compatible with maximum number of users.

Whereas ext4-cksum is not compatible with all of these

users because it cannot be assured that every newer and

older system takes this change from ext4 to ext4-chksum

positively. Some systems may recognize ext4 file system

but not an ext4-chksum file system. It is limiting the user

base, which was claimed by ViewBox as an advantage over

Dropbox and Seafile.

E. Data Loss

In case of unexpected application behaviour ViewBox rolls

back to previous image of complete data, so client will lose

all modifications made after that image synchronization [7].

There must be some step by step rolling back mechanism so

that user’s latest modifications don’t get lost [8]. So users

cannot rely on such methods for their important data.

III. IMPLEMENTATION AND RESULTS

To overcome the problems discussed in the previous section,

we propose a new tool called SafeBox, which uses Cyclic

Redundancy Check [9] to detect errors in data, while storing

it in cloud. We have chosen EXT4 [10] file system instead

of ZFS file system, which is typically used in Dropbox and

Seafile system, as it is compatible with the older systems

that provides us with broad range of users. We have used

the basics of Dropbox and implemented our own method to

overcome the problems of data consistency and have tried

to minimize the problems in ViewBox. We have used Ext4-

crc file system to provide better Corruption detection and

lesser data overhead, as shown in Fig. 4. Ext4 file system

does not provide us usable detection of data corruption and

information about consistency. Ext4-crc is used to

overcome this limitation of data consistency faced in

Dropbox as well as the problem of data overheads. Cyclic

Redundancy Check [11] has very high level of error

checking accuracy. In fact a lot of technology related

experts believe that it is the most accurate error checking

solution, when it comes to checking data in the form of

blocks [11]. Additionally CRC gives us very little data

overhead. CRC is much more reliable than other methods as

a 16 bit CRC can detect 99.998% errors, which means only

0.002% of error propagation. If we use 32 bit CRC, than it

will consume a little bit more data, can detect errors with up

to 99.999999997% accuracy and only 0.000000003% error

rate. This accuracy level is much better than what is

typically achieved by other synchronization service

providers.

SafeBox uses the (snapshots) image of file system, instead

of saving full data of file system as backup. This method

uses minimum band width while sending data to the backup

server, so causes less data over head. To provide more

consistency, we save backup of data at two point, one at

remote user machine and another at our server storage. We

keep frequent backups of our data at user machine and less

frequent backup on the server storage. Both of these

backups contain only one image of the file system each.

Saving only snapshot of file system as backup, saves a lot

of space that would have been used to keep all the data as

backup.

Fig. 4 Cyclic Redundancy Check (CRC) Model.

A. Storing Data on Cloud

In order to store data on the cloud, we take an image of the

file system of the data and save it as a backup on cloud

storage system. CRC code is attached to this data’s file

system and this package (data+ext4-crc) is sent to the cloud

storage. At the cloud’s end CRC is checked if it indicates an

error than a new file system image is taken and this data is

not stored (saved as draft) on the cloud and a report

including new image is sent back to client.

There are two types of errors that can occur during data

transfer i) CRC code gets corrupted, ii) Data is corrupted.

We take both cases one by one and check on client side that

where the problem has occurred. First we compare the new

image and the older one i.e. the one stored as backup, if

these images are identical it means that the data was

transferred successfully but the problem occurred in the

CRC code section. In this case there is no need to send the

data again and data from the draft can now be used to store

data on the cloud. If images do not match, then we send the

data from the backup on client side to the cloud again, as

shown in Fig. 5. This process is repeated until data is

correctly stored at the cloud. Every time a successful

submission occurs at the cloud end a new image of the file

system is taken and it overwrites the previous backup image

(first we save new image if successful then we delete older

backup image).

B. Self-Consistency

When the data is saved on the cloud, to maintain self-

consistency i.e. data is not changed by some virus attack or

by system failure on service provider’s end, we keep on

taking new file system images from time to time and store

these file system images on a backup storage. If it does not

match then the restoration mechanism is initiated to restore

the original data.

Fig. 5 Storing Data on the Cloud.

C. Retrieving Data from Cloud

When cloud server receives a request from user to retrieve

data from cloud, user downloads data from the cloud and

also downloads its file system image (snapshot) backup

stored on server. User also takes a snapshot of downloaded

data and matches both, downloaded and new snapshot taken

at user’s end, if they do not match that means some data

corruption has been taken place at server’s end or during

transfer of data. During the download CRC is again attached

with file system image to detect errors as shown in Fig. 6. If

this corruption is not detected, it can lead to data

inconsistency due to corruption propagation, i.e. if the

corrupted data is modified and then saved back to the cloud

and this process is repeated, the original data may be

permanently lost.

Fig. 6 Retrieving Data from Cloud.

D. Modifying Data on Cloud

Modifying data on the cloud is basically sum of the two

processes which have been discussed above. To modify data

on the cloud we first have to retrieve data, then we alter it

on remote client and save it back to the cloud. For multi-

client user we only provide backup at the server end

because user is changing its working environment

frequently and cloud services do not have access to all the

systems that users may be using at the time. So providing

backup at user level is not possible in case of multi-client

users. We use the backup provided at the cloud server

because it is authentic and it does not conflict with any of

the users’ data.

IV. CONCLUSION

In this paper we have presented a cloud storage solution that

uses cyclic redundancy check to detect errors during data

synchronization, we have found that error propagation is

reduced significantly. Self-consistency check ensures much

needed data consistency so that data does not change

undesirably over time. Due to better error detection, our

method uses less number of bits for error detection, which

reduces data overheads that were faced in previously used

methods. Our method reduces synchronization time and

bandwidth usage during data transfer.

ACKNOWLEDGMENT

The authors would like to thank Dr. Asad Waqar Malik,

Assistant Professor, School of Electrical Engineering and

Computer Science (SEECS), National University of

Sciences and Technology (NUST), Pakistan for his help,

support and guidance. The authors would also like to thank

High Performances Computing (HPC) Laboratory members

for providing assistance and hardware required to

implement this research project.

REFERENCES

[1] S. Umair, U. Muneer, M. N. Zahoor, and A. W.

Malik, "Mobile computing: issues and challenges," in

2015 12th International Conference on High-

capacity Optical Networks and Enabling/Emerging

Technologies (HONET), 2015, pp. 1-5.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

Katz, A. Konwinski, et al., "A view of cloud

computing," Communications of the ACM, vol. 53,

pp. 50-58, 2010.

[3] A. R. Mohammad, K. Mohiuddin, M. Irfan, and M.

Moizuddin, "Cloud the mainstay: growth of social

networks in mobile environment," in Cloud &

Ubiquitous Computing & Emerging Technologies

(CUBE), 2013 International Conference on, 2013, pp.

14-19.

[4] S. Umair, U. Muneer, M. N. Zahoor, and A. W.

Malik, "Mobile Cloud Computing Future Trends and

Opportunities," Managing and Processing Big Data

in Cloud Computing, p. 105, 2016.

[5] A. T. Velte, T. J. Velte, R. C. Elsenpeter, and R. C.

Elsenpeter, Cloud computing: a practical approach:

McGraw-Hill New York, 2010.

[6] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R.

H. Arpaci-Dusseau, "ViewBox: integrating local file

systems with cloud storage services," in Proceedings

of the 12th USENIX Conference on File and Storage

Technologies (FAST 14), 2014, pp. 119-132.

[7] R. Dobkin, R. Ginosar, and C. P. Sotiriou, "Data

synchronization issues in GALS SoCs," in

Asynchronous Circuits and Systems, 2004.

Proceedings. 10th International Symposium on, 2004,

pp. 170-179.

[8] T. Baicheva, S. Dodunekov, and P. Kazakov,

"Undetected error probability performance of cyclic

redundancy-check codes of 16-bit redundancy," IEE

Proceedings-Communications, vol. 147, pp. 253-256,

2000.

[9] E. Posner and P. Merkey, "Optimum Cyclic

Redundancy Codes for Noisy Channels," 1986.

[10] (July 2016). Ext4. Available:

https://ext4.wiki.kernel.org/index.php/Ext4_Howto

[11] G. Castagnoli, S. Brauer, and M. Herrmann,

"Optimization of cyclic redundancy-check codes

with 24 and 32 parity bits," IEEE Transactions on

Communications, vol. 41, pp. 883-892, 1993.

